Heading: 
UDC: 
595.142.39:574

TROPHOMETABOLIC POTENTIAL OF ESENIA FETIDA SAVIGNY, 1826 (OLIGOCHATA, LUMBRICIDAE) CAUSED BY COPPER NANOPARTICLES AND COPPER OXIDE IN THE SOIL

Abstract

Depending on the concentrations of Cu and CuO nanoparticles (NPs) (50, 100 and 500 mg/kg dry matter) introduced into an artificial soil, the influence of Cu NPs upon E. fetida is much stronger than similar CuO doses. In particular, this was reflected in higher mortality (80%) and a 50% weight reduction of the worm (p ≤ 0.05) when the dose of Cu NPs was 500 mg/kg, whereas the validity limit of the test (20%) was not exceeded with a similar dose of CuO. Copper hyperaccumulation in the body of E. fetida under the influence of Cu NPs was noted, while at exposure in a medium with CuO NPs, copper accumulated up to a level of 29 mg/kg with subsequent reduction. As to the activity of antioxidant enzymes, the rates of malondialdehyde , superoxide dismutase decreased and that of catalase increased. The enzymatic activity was quite opposite in the presence of CuO NPs.

DOI: 
10.18500/1684-7318-2017-2-147-156
References

Покаржевский А. Д. Геохимическая экология наземных животных. М. : Наука, 1985. 302 с.

Тейлор Д., Грин Н., Стаут У. Биология : в 3 т. / под ред. Р. Сопера. M. : Мир, 2004. Т. 2. С. 139.

Adams L. K., Lyon D. Y., Alvarez P. J. J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions // Water Research. 2006. Vol. 40, iss. 19. Р. 3527 – 3532.

Alexander M. Aging, bioavailability, and overestimation of risk from environmental pollutants // Environmental Science Technology. 2000. Vol. 34, № 20. Р. 4259 – 4265.

Brown P. J., Long S. M., Spurgeon D. J., Svendsen C., Hankard P. K. Toxicological and biochemical responses of the earthworm Lumbricus rubellus to pyrene, a non-carcinogenic polycyclic aromatic hydrocarbon // Chemosphere. 2004. Vol. 57, № 11. Р. 1675 – 1681.

Dalby P. R., Baker G. H., Smith S. E. «Filter paper method» to remove soil from earthworm intestines and to standardize the water content of earthworms // Soil Biology and Biochemistry. 1996. Vol. 28, iss. 4 – 5. P. 685 – 687.

Eisenhauer N. The action of an animal ecosystem engineer : identification of the main mechanisms of earthworm impacts on soil microarthropods // Pedobiologia. 2010. Vol. 53, iss. 6. Р. 343 – 352.

García-Gómez C., Esteban E., Beatriz Saґnchez-Pardo B., Dolores M. Assessing the ecotoxicological effects of long-term contaminated mine soils on plants and earthworms : relevance of soil (total and available) and body concentrations // Ecotoxicology. 2014. Vol. 23, iss. 7. Р. 1195 – 1209.

Handy R. D., Henry T. B., Scown T. M., Johnston B. D., Tyler C. R. Manufactured nanoparticles : their uptake and effects on fish-a mechanistic analysis // Ecotoxicology. 2008. Vol. 17, iss. 5. Р. 396 – 409.

Jouquet P., Blanchart E., Capowiez Y. Utilization of earthworms and termites for the restoration of ecosystem functioning // Applied Soil Ecology. 2014. Vol. 73. Р. 34 – 40.

Kou Y. G., Fu X. Y., Hou P. Q. The study of lead accumulation of earthworm in lead pollution soil // Environmental Science and Management. 2008. Vol. 33, № 1. Р. 62 – 64 (In Chinese).

Lavelle P., Decaëns T., Aubert M., Barot S., Blouin M., Bureau F., Margerie P., Mora P., Rossi J.-P. Soil invertebrates and ecosystem services // European J. of Soil Biology. 2006. Vol. 42, iss. 1. Р. 3 – 15.

Li Z. Q., Wang B. B., Nie J. H. Effects of copper on earthworm in body weight and its copper accumulating characteristics // Acta Ecologica Sinica. 2009. Vol. 29. Р. 1408 – 1414 (In Chinese).

Lin D. H., Xing B. S. Phytotoxicity of nanoparticles : inhibition of seed germination and root growth // Environmental Pollution. 2007. Vol. 150, iss. 2. Р. 243 – 250.

Lin D., Xie X., Zhou Q., Liu Y. Biochemical and genotoxic effect of triclosan on earthworms (Eisenia fetida) using contact and soil tests // Environmental Toxicology. 2012. Vol. 27, iss. 7. Р. 385 – 392.

Liu Y., Zhou Q., Xie X., Lin D., Dong L. Oxidative stress and DNA damage in the earthworm Eisenia fetida induced by toluene, ethylbenzene and xylene // Ecotoxicology. 2010. Vol. 19, № 8. Р. 1551 – 1559.

Livingstone D. R. Biotechnology and pollution monitoring : use of molecular biomarkers in the aquatic environment // J. of Chemical Technology and Biotechnology. 1993. Vol. 57, iss. 3. Р. 195 – 211.

Lover S. B., Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C-60) nanoparticles // Environmental Toxicology and Chemistry. 2006. Vol. 25, iss. 4. Р. 1132 – 1137.

Luoma S. N., Rainbow P. S. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept // Environmental Science and Technology. 2005. Vol. 39, iss. 7. Р. 1921 – 1931.

Morgan J. E., Richards S. P. G., Morgan A. J. Stable strontium accumulation by earthworms : A paradigm for radiostrontium interactions with its cation analogue, calcium // Environmental Toxicology and Chemistry. 2001. Vol. 20, iss. 6. Р. 1236 – 1243.

Pan B., Xing B. S. Applications and implications of manufactured nanoparticles in soils : a review // European J. of Soil Science. 2012. Vol. 63, iss. 4. Р. 437 – 456.

Peijnenburg W. J. G. M., Baerselman R., de Groot A. C., Jager T., Posthuma L., Van Veen R. P. M. Relating environmental availability to bioavailability : soil-type-dependent metal accumulation in the oligochaete Eisenia Andrei // Ecotoxicology and Environmental Safety. 1999. Vol. 44, iss. 3. Р. 294 – 310.

Sample B. E., Beauchamp J. J., Efroymson R. A., Suter G. W., Ashwood T. L. Development and validation of bioaccumulation models for earthworms // Environmental Restoration Program / ed. M. Lockweed. Tennessee : Oak Ridge National Laboratory, 1998. 88 p.

Scott-Fordsmand J. J., Krogh P. H., Schaefer M., Johansen A. The toxicity testing of double-walled nanotubes-contaminated food to Eisenia veneta earthworms // Ecotoxicology and Environmental Safety. 2008. Vol. 71, iss. 3. Р. 616 – 619.

Semenzin E., Critto A., Carlon C., Rutgers M., Marcomini A. Development of a site-specific ecological risk assessment for contaminated sites : part II. A multi-criteria based system for the selection of bioavailability assessment tools // Science of the Total Environment. 2007. Vol. 379, iss. 1. Р. 34 – 45.

Sun W., Tai T. Y., Lin Y. S. Effect of monosultap on protein content. SOD and AChE activity of Eisenia foetida under two different temperatures // J. Agro-Environment Science. 2007. Iss. 5. Р. 1816 – 1821 (In Chinese).

Suthar S., Singh S., Dhawan S. Earthworm as bioindicators of metals (Zn, Fe, Mn, Cu, Pb and Cd) in soils : is metal bioaccumulation affected by their ecological categories // Ecological Engineering. 2008. Vol. 32, iss. 2. Р. 99 – 107.

Van Gestel C. A. M., Koolhaas J. E., Hamers T., van Hopper M., van Roovert M., Korsman C., Reinecke S. A. Effects of metal pollution on earthworm communities in a contaminated floodplain area : linking biomarker, community and functional responses // Environmental Pollution. 2009. Vol. 157, iss. 3. P. 895 – 903.

Van Straalen N. M., Butovsky R. O., Pokarzhevskii A. D., Zaitsev A. S., Verhoef S. C. Metal concentrations in soil and invertebrates in the vicinity of a metallurgical factory near Tula (Russia) // Pedobiologia. 2001. Vol. 45, iss. 5. Р. 451 – 466.

Vijver M. G., Van Gestel C. A. M., Lanno R. P., Van Straalen N. M., Peijnenburg W. J. G. M. Internal metal sequestration and its ecotoxicological relevance : a review // Environmental Science and Technology. 2004. Vol. 38, iss. 18. Р. 4705 – 4712.

Vijver M. G., Vink J. P. M., Miermans C. J. H., Van Gestel C. A. M. Oral sealing using glue : a new method to distinguish between intestinal and dermal uptake of metals in earthworms // Soil Biology and Biochemistry. 2003. Vol. 35, iss. 1. Р. 125 – 132.

Wang M. E., Zhou Q. X. Joint stress of chlorimuron-ethyl and cadmium on wheat Triticum aestivum at biochemical levels // Environmental Pollution. 2006. Vol. 144, iss. 2. Р. 572 – 580.

Zhang J., Yu J., Ouyang Y., Xu H. Responses of earthworm to aluminum toxicity in latosol // Environmental Science and Pollution Research. 2013. Vol. 20, iss. 3. Р. 1135 – 1141.

Zhang B., Pan X., Cobb G. P., Anderson T. A. Uptake, bioaccumulation, and biodegradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) and its reduced metabolites (MNX and TNX) by the earthworm (Eisenia fetida) // Chemosphere. 2009. Vol. 76, iss. 1. Р. 76 – 82.

p. 147
Full text (in Russian):