Gamma Radiation Effect of Partnogenetic Artemia (Branchiopoda, Anostraca) Cysts on Nauplius Hatching and Postnauplius Survival under Different Salinity


The effect of gamma radiation doses of 0, 2.5, 5.5 and 7.5 Gy received by Artemia cysts on the hatching of nauplii and post-nauplial survival of crustaceans was studied at salinities of 0, 9, 18, 36, 54, 62, 78 and 88 g/L. Under the same salinities, the above parameters were also estimated without irradiation. It has been found that the rate of nauplii hatching from cysts primarily depends on salinity, the coefficient of determination being 90%. The radiation dose did not affect nauplii hatching at any salinity, except 54 g/L, when a reliable negative relationship between the hatched nauplii fraction and the radiation dose was found. The survival of crustaceans appeared from irradiated cysts depended on salinity. In the salinity range of 9-52 g/L, it was significantly less than in the range of 62-88 g/L (2.5 and 5.5 Gy). The crustaceans came from the cysts received 7.5 Gy did not survive to 12 days at a salinity of 88 g/L. The minimum post-nauplial survivorship of the crustaceans was noted at a salinity of 54 g/L under all irradiation doses; this salinity can be considered as critical for artemia, when the osmoregulation mechanism reconfigures. Ecological effects in artemia populations can occur, starting from the dose of 2.5 Gy. The studied radiation doses may have long-term consequences for artemia populations in hypersalinated water bodies. To correctly quantify the effect of these doses on artemia populations, it is necessary to study not only the generation of crustaceans immediately hatched from irradiated cysts, but also 2-3 subsequent generations.


Balushkina E. V., Golubkov S. M., Golubkov M. S., Litvinchuk L. F., Shadrin N. V. Effect of abiotic and biotic factors on the structural and functional organization of the saline lake ecosystems. Zhurnal Obshchei Biologii, 2009, vol. 70, no. 6, pp. 504–514 (in Russian).
Gaevskaya N. The variability of Artemia salina. Proceedings of the Imperial Academy of Sciences, VI series, 1914, vol. 8, pp. 1158–1159 (in Russian).
Gulina L. V., Gulin S. B. Natural and man-made radionuclides in ecosystem of the salt lake Koyashskoe (SE Crimea). Marine Ecological J., 2011, vol. 1, no. 10, pp. 19–25 (in Russian).
Kuzin A. M. The eternal companion of life on Earth – radiation. Herald of the Russian Academy of Sciences, 1996, vol. 66, no. 4, pp. 330–332 (in Russian).
Kulepanov V. N. Ioniziruyushcheye izlucheniye v gidrosfere. Vvedeniye v radiobiologiyu i radioekologiyu gidrobiontov [Ionizing radiation in the hydrosphere. Introduction to the radiobiol-ogy and radioecology of hydrobionts]. Moscow, INFA-M Publ., 2017. 88 p. (in Russian).
Makrushin A. V., Lyanguzova I. V. Sheath of propagules of invertebrates and plants: selective permeability and barrier properties. Zhurnal Obshchei Biologii, 2006, vol. 67, no. 2, pp. 120–126 (in Russian).
Mirzoyeva N. Y. 90Sr in the ecosystems of salt lakes of the Crimea. J. of Siberian Federal University, Biology, 2016, vol. 4, no. 9, pp. 467–483 (in Russian).
Muller P., Neumann P., Storm P. Tables on Mathematical Statistics. Moscow, Finance and Statistics Publ., 1982. 278 p. (in Russian).
Polikarpov G. Morskaya radiokhimoekologiya i problema zagryazneniy [Marine Radiohimi-coecology and the Problem of Pollution]. Kiev, Naukova Dumka Publ., 1984. 184 p. (in Russian).
Polikarpov G. G., Yegorov V. N., Gulin S. B., Stokozov N. A., Lazorenko G. Ye., Mirzoyeva N. Yu., Tereshchenko N. N., Tsytsugina V. G., Kulebakina L. G., Popovichev V. N., Korotkov A. A., Yevtushenko D. B., Zherko N. V., Malakhova L. V. Radioekologicheskiy otklik Chernogo morya na chernobylskuyu avariyu [Radioecological response of the Black Sea to the Chernobyl accident]. Sevastopol, EKOSI–Gidrofizika, 2008. 667 p. (in Russian).
Radchenko L. A. Influence of temperature on the post-radiation survival of Artemia salina (L.). Hydrobiological J., 1984, vol. 20, no. 1, pp. 61–65 (in Russian).
Rudneva I. I. Artemiya. Perspektivy ispolzovaniya v narodnom khozyaystve [Artemia. Pros-pects of use in the National Economy]. Kiev, Naukova Dumka Publ., 1991. 144 p. (in Russian).
Shadrin N. V. Alternative stable states of lake ecosystems and critical salinities: is there a rigid connection? Proceedings of the Zoological Institute RAS, 2013, vol. 317, suppl. 3, pp. 214–221 (in Russian).
Anufriieva E. V., Shadrin N. V. The swimming behavior of Artemia (Anostraca): new experimental and observational data. Zoology, 2014, vol. 117, no. 6, pp. 415–421. 
Baid I. C. The effect of salinity on growth and form of Artemia salina (L). J. of Experimental Zoology, Part A, 1963, vol. 153, no. 3, pp. 279–283.
Belmonte G., Moscatello S., Batogova E. A., Pavlovskaya T., Shadrin N. V., Litvinchuk L. F. Fauna of hypersaline lakes of the Crimea (Ukraine). Thalassia Salentina, 2012, vol. 34, pp. 11–24.
Brumfiel G. Directly comparing Fukushima to Chernobyl. Nature News Blog, 2011. Available at: http://blogs.nature.com/news/2011/09/directly_comparing_fukushima_t.html (accessed 8 February 2012).
Conte F. P., Droukas P. C., Ewing R. D. Development of sodium regulation and de novo synthesis of Na+K activated ATPase in larval brine shrimp, Artemia salina.  J. of Experimental Zoology, Part A, 1977, vol. 202, no. 3, pp. 339–361. 
Dai L., Chen D.-F., Liu Y.-L., Zhao Y., Yang F., Yang J.-S., Yang W.-J. Extracellular matrix peptides of Artemia cyst shell participate in protecting encysted embryos from extreme environments. PLoS ONE, 2011, vol. 6, no. 6, pp. e20187. 
Dallas L. J., Keith-Roach M., Lyons B. P., Jha A. N. Assessing the impact of ionizing radiation on aquatic invertebrates: A critical review. Radiation Research, 2012, vol. 177, pp. 693–716. 
Davenport J., Healy A. Relationship between medium salinity, body density, buoyancy and swimming in Artemia franciscana larvae: constraints on watercolumn use? Hydrobiologia, 2006, vol. 556, iss. 1, pp. 295–301. 
Dhont J., Sorgeloos P. Applications of Artemia. In: T. J. Abatzopoulos, J. A. Beardmore, J. S. Clegg, P. Sorgeloos, eds. Artemia: Basic and Applied Biology. Vol. 1. Biology of Aquatic Organisms. Dordrecht, Springer, 2002, pp. 251–277. 
El-Gamal M. M. Respiration of Artemia franciscana cultured under different salinities. Animal Biology, 2011, vol. 61, no. 4, pp. 413–425. 
Fuller N., Lerebours A., Smith J. T., Ford A. T. The biological effects of ionising radiation on Crustaceans: A review. Aquatic Toxicology, 2015, vol. 167, pp. 55–67. 
Gajardo G. M., Beardmore J. A. The brine shrimp Artemia: adapted to critical life conditions. Frontiers in Physiology, 2012, vol. 3, pp. 185. DOI: 10.3389/fphys.2012.00185
Gaubin Y., Pianezzi B., Planel H. Radiation-induced changes in late effects and in develop-mental capacities of exposed artemia cysts. Mechanisms of Ageing and Development, 1985, vol. 32, no. 1, pp. 21–32. 
Gilbin R., Alonzo F., Garnier-Laplace J. Effects of chronic external gamma irradiation on growth and reproductive success of Daphnia magna. J. of Environmental Radioactivity, 2008, vol. 99, iss. 1, pp. 134–145. 
Jia Q., Anufriieva E., Liu X., Kong F., Shadrin N. Intentional introduction of Artemia sinica (Anostraca) in the high-altitude Tibetan Lake Dangxiong Co: the new population and consequences for the environment and for humans. Chinese J. of Oceanology and Limnology, 2015, vol. 33, iss. 6, pp. 1451–1460. 
Jorgensen P. L., Amat F. Regulation and function of lysine-substituted Na, K pumps in salt adaptation of Artemia franciscana. J. of Membrane Biology, 2008, vol. 221, no. 1, pp. 39–49. 
Khlebovich V. V., Aladin N. V. The salinity factor in animal life. Herald of the Russian Academy of Sciences, 2010, vol. 80, no. 3, pp. 299–304. 
MacRae T. H. Stress tolerance during diapause and quiescence of the brine shrimp, Artemia. Cell Stress Chaperon, 2016, vol. 21, iss. 1, pp. 9–18. 
Mirzoyeva N., Gulina L., Gulin S., Plotitsina O., Stetsuk A., Arkhipova S., Korkishko N., Eremin O. Radionuclides and mercury in the salt lakes of the Crimea. Chinese J. of Oceanology and Limnology, 2015, vol. 33, iss. 6, pp. 1413–1425. 
Novikova N., Gusev O., Polikarpov N., Deshevaya E., Levinskikh M., Alekseev V., Okuda T., Sugimoto M., Sychev V., Grigoriev А. Survival of dormant organisms after long-term exposure to the space environment. Acta Astronautica, 2011, vol. 68, iss. 9–10, pp. 1574–1580. 
Qiu Z., MacRae T. H. ArHsp22, a developmentally regulated small heat shock protein pro-duced in diapause-destined Artemia embryos, is stress inducible in adults. FEBS J., 2008, vol. 275, iss. 14, pp. 3556–3566. 
Schmankewitsch M. W. J. On the relations of Artemia salina and Artemia Muhlhausenii, and on the genus Branchipus. J. of Natural History, 1876, vol. 17, no. 99, pp. 256–258. 
Shadrin N. V., Anufriieva E. V. Size polymorphism and fluctuating asymmetry of Artemia (Branchiopoda: Anostraca) populations from the Crimea.  J. of Siberian  Federal  University, Biology, 2017, vol. 10, iss. 1, pp. 114–126. 
Shadrin N. V., Anufriieva E. V., Amat F., Eremin O. Y. Dormant stages of crustaceans as a mechanism of propagation in the extreme and unpredictable environment in the Crimean hyper-saline lakes. Chinese J. of Oceanology and Limnology, 2015, vol. 33, iss. 6, pp. 1362–1367. 
Shadrin N. V., Anufriieva E. V., Kipriyanova L. M., Kolesnikova Е. А., Latushkin A. A., Romanov R. E., Sergeeva N. G. The political decision caused the drastic ecosystem shift of the Sivash Bay (the Sea of Azov). Quaternary International, 2018, vol. 475, pp. 4–10.
Waters C. N., Zalasiewicz J., Summerhayes C., Barnosky A. D., Poirier C., Gałuszka A., Cearreta A., Edgeworth M., Ellis E. C., Ellis M., Jeandel C., Leinfelder R., McNeill J. R., Rich-ter D. de B., Steffen W., Syvitski J., Vidas D., Wagreich M., Williams M., Zhisheng A., Grinevald J., Odada E., Oreskes N., Wolfe A. P. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 2016, vol. 351, iss. 6269, pp. 138–147. 
Wu G., Zhang H., Sun J., Liu F., Ge X., Chen W-H., Yu J., Wang W. Diverse LEA (late embryogenesis abundant) and LEA-like genes and their responses to hypersaline stress in post-diapause embryonic development of Artemia franciscana. Comparative Biochemistry and Physiology, Part B, 2011, vol. 160, no. 1, pp. 32–39. 
Zadereev E. S., Lopatina T. S., Zotina T. A., Oskina N. A., Dementyev D. V., Petrichenkov M. V. The effect of γ-radiation on resting eggs and life cycle of cladoceran Moina macrocopa. Doklady Biochemistry and Biophysics, 2016, vol. 466, no. 1, pp. 61–65. 
Zhu X. J., Feng C. Z., Dai Z. M., Zhang R. C., Yang W. J. AMPK alpha subunit gene characterization in Artemia and expression during development and in response to stress. Stress, 2007, vol. 10, no. 1, pp. 53–63.

стр. 418
Short text (in English): 
Full text (in Russian):